Identify Key Concepts Identify key concepts and terms related to our topic area. There may be just one concept or, much more likely, several concepts that will need to be considered.

MP1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution.

They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution.

They monitor and evaluate their progress and change course if necessary.

Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends.

Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?

MP2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: Quantitative reasoning entails habits of 5 describe how you might appropriately a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

MP3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures.

They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others.

They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is.

Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies.

Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

MP4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation.

In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another.

Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later.

They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions.

They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

MP5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software.Hi @Alain, the problem here is that you are trying to deviate from the usual behaviour of a standard control..

Even if you think it's better to do it the way you describe, it will be inconsistent with how people are used to comboboxes working, which in most cases is a bad idea.

– joshuahealy Mar 14 '12 at thoughts on “ So You’re Wondering If Your Child Might Be Autistic Jen January 1, at pm. Thank you. There are alot of times I think, he’s normal, he just has (x, y, z) challenges. Then I think to myself, this ISN’T normal.

Accordingly all those above-mentioned dogmas appear to have been transmitted from Moses the great to the Greeks.

That all things belong to the wise man, is taught in these words: And because God has showed me mercy, I have all things. And that he is beloved of God, God intimates when He says, The. Dressing (Teachers) For Success "Dressing appropriately" used to be a phrase with universal meaning.

But in an age where flip flops appear in White House photos, some school districts want to make it clear how they expect all staff members -- including teachers -- to dress.

How to Cope With Emotional Pain. Emotional pain is an inevitable part of life. Knowing that doesn't seem to make it any easier. Whether the pain is associated with a trauma, a loss, or a disappointment, you must develop a strategy to.

The Verb Recognize a verb when you see one. Verbs are a necessary component of all timberdesignmag.com have two important functions: Some verbs put stalled subjects into motion while other verbs help to clarify the subjects in meaningful ways.

- How to write a compare contrast essay template
- Voip2 biz inc deciding on the next steps for a voip supplier
- A report on the research project smart city
- What it takes academic writing in college 2nd edition
- How to write appendices in a report
- Attitudes toward religious truths
- Write a nasreddin hodja story
- Write a press release for new product launching
- How to write a good definition essay
- How to write a personal reference letter for a family member
- A discussion on gods place in f scott fitzgeralds novel the great gatsby

National Pressure Ulcer Advisory Panel (NPUAP)